Functions | |
__device__ void | spiky (real *W, real dWdx[DIM], real *dWdr, real dx[DIM], real sml) |
Spiky kernel (Desbrun & Cani). More... | |
__device__ void | cubicSpline (real *W, real dWdx[DIM], real *dWdr, real dx[DIM], real sml) |
Cubic spline kernel (Monaghan & Lattanzio 1985). More... | |
__device__ void | wendlandc2 (real *W, real dWdx[DIM], real *dWdr, real dx[DIM], real sml) |
__device__ void | wendlandc4 (real *W, real dWdx[DIM], real *dWdr, real dx[DIM], real sml) |
__device__ void | wendlandc6 (real *W, real dWdx[DIM], real *dWdr, real dx[DIM], real sml) |
__device__ void SPH::SmoothingKernel::cubicSpline | ( | real * | W, |
real | dWdx[DIM], | ||
real * | dWdr, | ||
real | dx[DIM], | ||
real | sml | ||
) |
Cubic spline kernel (Monaghan & Lattanzio 1985).
With the normalization constant \( \sigma \) and dimensionality \( d \) the kernel can be defined as:
\[ \begin{equation} W(q) = \frac{\sigma}{h^d} \begin{cases} (6q^3-6q2+1) & \text{ for } 0 \leq q < \frac{1}{2} \\ 2(1-q)^3 & \text{ for } \frac{1}{2} \leq q \leq 1 \\ 0 & \text{ for } q > 1 \\ \end{cases} \quad \sigma = \begin{cases} \frac{4}{3} & \text{for } d = 1 \\ \frac{40}{7 \pi} & \text{for } d = 2\\ \frac{8}{\pi} & \text{for } d = 3 \\ \end{cases} \, . \end{equation} \]
[out] | W | smoothed value/contribution |
[out] | dWdx | spatial derivative for each coordinate axis (dimensionality: DIM) |
[out] | dWdr | spatial derivative |
[in] | dx | spatial separation (dimensionality: DIM) |
[in] | sml | smoothing length |
Definition at line 50 of file kernel.cu.
__device__ void SPH::SmoothingKernel::spiky | ( | real * | W, |
real | dWdx[DIM], | ||
real * | dWdr, | ||
real | dx[DIM], | ||
real | sml | ||
) |
Spiky kernel (Desbrun & Cani).
With the normalization constant \( \sigma \) and dimensionality \( d \) the kernel can be defined as:
\[ \begin{equation} W(q) = \frac{\sigma}{h^d} \begin{cases} (1-q)^3 & \text{for } 0 \leq q < 1 \\ 0 & \text{for } q \geq 1 \\ \end{cases} \quad \sigma = \begin{cases} \frac{10}{\pi} & \text{for } d=2 \\ \frac{15}{\pi} & \text{for } d=3 \\ \end{cases} \, . \end{equation} \]
[out] | W | smoothed value/contribution |
[out] | dWdx | spatial derivative for each coordinate axis (dimensionality: DIM) |
[out] | dWdr | spatial derivative |
[in] | dx | spatial separation (dimensionality: DIM) |
[in] | sml | smoothing length |
Definition at line 14 of file kernel.cu.
__device__ void SPH::SmoothingKernel::wendlandc2 | ( | real * | W, |
real | dWdx[DIM], | ||
real * | dWdr, | ||
real | dx[DIM], | ||
real | sml | ||
) |
Wendland C2 (Dehnen & Aly, 2012)
With the normalization constant \( \sigma \) and dimensionality \( d \) the kernel can be defined as:
\[ \begin{equation} W (q) = \frac{\sigma}{h^d} \begin{cases} (1-q)^4 (1+4q) & \text{for }d=2\text{, } d=3 \text{ and } 0 \leq q < 1 \\ (1-q)^3 (1+3q) & \text{for }d=1 \text{ and } 0 \leq q < 1 \\ 0 & q \geq 1 \end{cases} \quad \sigma = \begin{cases} \frac{5}{4} & \text{for } d=1 \\ \frac{7}{\pi} & \text{for } d=2 \\ \frac{21}{2 \pi} & \text{for }d=3 \\ \end{cases} \, . \end{equation} \]
[out] | W | smoothed value/contribution |
[out] | dWdx | spatial derivative for each coordinate axis (dimensionality: DIM) |
[out] | dWdr | spatial derivative |
[in] | dx | spatial separation (dimensionality: DIM) |
[in] | sml | smoothing length |
Definition at line 86 of file kernel.cu.
__device__ void SPH::SmoothingKernel::wendlandc4 | ( | real * | W, |
real | dWdx[DIM], | ||
real * | dWdr, | ||
real | dx[DIM], | ||
real | sml | ||
) |
Wendland C4 (Dehnen & Aly, 2012)
With the normalization constant \( \sigma \) and dimensionality \( d \) the kernel can be defined as:
\[ \begin{equation} W (q) = \frac{\sigma}{h^d} \begin{cases} (1-q)^6 (1 + 6q + \frac{35}{3}q^2) & \text{for } d=2\text{, } d=3 \text{ and } 0 \leq q < 1 \\ (1-q)^5 (1+5q+8q^2) & \text{for } d=1 \text{ and } 0 \leq q < 1 \\ 0 & q \geq 1 \end{cases} \quad \sigma = \begin{cases} \frac{3}{2} & \text{for } d=1 \\ \frac{9}{\pi} & \text{for } d=2 \\ \frac{495}{32 \pi} & \text{for } d=3 \\ \end{cases} \end{equation} \]
[out] | W | smoothed value/contribution |
[out] | dWdx | spatial derivative for each coordinate axis (dimensionality: DIM) |
[out] | dWdr | spatial derivative |
[in] | dx | spatial separation (dimensionality: DIM) |
[in] | sml | smoothing length |
Definition at line 118 of file kernel.cu.
__device__ void SPH::SmoothingKernel::wendlandc6 | ( | real * | W, |
real | dWdx[DIM], | ||
real * | dWdr, | ||
real | dx[DIM], | ||
real | sml | ||
) |
Wendland C6 (Dehnen & Aly, 2012)
With the normalization constant \( \sigma \) and dimensionality \( d \) the kernel can be defined as:
\[ \begin{equation} W (q) = \frac{\sigma}{h^d} \begin{cases} (1-q)^8 (1 + 8q + 25 q^2 + 32 q^3) & \text{for } d=2\text{, } d=3 \text{ and } 0 \leq q < 1 \\ (1-q)^7 (1 + 7q + 19 q^2 + 21 q^3) & \text{for } d=1 \text{ and } 0 \leq q < 1 \\ 0 & q \geq 1 \end{cases} \quad \sigma = \begin{cases} \frac{55}{32} & \text{for } d=1 \\ \frac{78}{7 \pi} & \text{for } d=2 \\ \frac{1365}{64 \pi} & \text{for } d=3 \\ \end{cases} \, . \end{equation} \]
[out] | W | smoothed value/contribution |
[out] | dWdx | spatial derivative for each coordinate axis (dimensionality: DIM) |
[out] | dWdr | spatial derivative |
[in] | dx | spatial separation (dimensionality: DIM) |
[in] | sml | smoothing length |
Definition at line 152 of file kernel.cu.